라벨이 swap인 게시물 표시

Python은 어떻게 swap하는가

지난번 글 에서 Lua의 multiple assignment를 이용한 swap이 내부적으로 어떻게 돌아가는지 설명했었다. 그렇다면 파이선은 어떨까? 자신의 버추얼 머신의 구현까지 제공하는 루아와 다르게 파이선은 공식적으로 어떤 버추얼 머신을 사용해야 하는지 제공하지 않는다. dis 라이브러리를 통해서 어떤 바이트 코드가 나오는지 알 수 있지만, 구체적인 버추얼 머신의 스펙을 정의하거나 바이트 코드의 구현을 정의하지 않는다. 덕분에 PyPy , IronPython , Jython 등 다양한 구현체가 존재한다. 이번에는 우선 그중에서 사실상 표준 구현체라고 할 수 있는 CPython의 구현에 대해서 살펴보겠다. CPython의 버추얼 머신이 어떻게 구현돼야 하는가는 명확히 기술되지 않았지만, CPython의 바이트 코드를 보면, CPython은 Lua가 레지스터 머신을 사용하는 것과 다르게 스택 머신을 사용한다는 것을 쉽게 알 수 있다. CPython의 버추얼 머신은 스택과 글로벌/로컬 메모리를 가지고 있다. 글로벌 메모리와 로컬 메모리는 객체의 레퍼런스를 저장하는 데 사용되고 계산을 하기 위해서는 스택으로 레퍼런스를 복사해온 뒤 사용해야 한다. 이제 swap이 CPython에서 어떤 바이트 코드로 컴파일되는지 살펴보자. 위와 같은 코드는 아래와 같은 바이트 코드로 컴파일된다. 여기서 ROT_TWO 는 스택의 가장 위의 두 아이템의 위치를 바꿔주는 바이트 코드다. 즉, 위의 바이트 코드는 스택에 a 를 올리고 b 를 올린 뒤, 스택의 가장 위의 두 아이템의 위치를 바꾸고, 스택 가장 위의 아이템을 b 에 다음 아이템을 a 에 저장하는 것이다. 그렇다면 ROT_TWO 는 어떻게 구현됐을까? 현재 CPython에서 ROT_TWO 는 임시 변수 2개를 사용하여 스택의 두 값의 위치를 바꾸는 것으로 돼 있다. 즉, CPython에서는 변수 2개를 스왑하기 위해서 스택의 두 자리, ROT_TWO 에서 사용하는 임시 변수 두 자리까지 총 6개의 의...

Lua를 쓰면 3번째 의자가 필요하지 않을까 - lua는 어떻게 swap할까

프로그래머들 사이에서 자주 하는 농담 중에 프로그래머 두 명이 자리를 바꾸려면 의자가 3개 필요하다는 농담이 있다. 둘이 동시에 자리에서 일어나 자리를 옮길 수 있는 사람과 달리 컴퓨터가 다루는 값은 언제나 어딘가에는 할당돼 있어야 해서 나온 말이다. c++로 작성하면 아래와 같은 코드가 되는데, 여기서 local 변수인 temp 가 3번째 의자가 된다. 그렇다면 multiple assignment 가 가능한 lua같은 언어는 어떨까? lua로 swap 하는 함수를 짜면 위와 같은 코드가 된다. 일단 겉보기에는 3번째 의자가 필요 없어 보인다. 하지만 정말로 3번째 의자가 필요 없을까? 어떤 트릭을 쓰기에 그런 것이 가능한 것일까? 일단 결론부터 말하면 그런 마법은 없다. 위의 코드가 루아 바이트 코드로 컴파일되면 다음과 같은 바이트 코드가 나온다. 이 코드를 이해하기 위해 우선 루아 버츄얼 머신을 이해해야 한다. 루아 버츄얼 머신은 stack-based가 아니라 register-based 머신이다. 루아 버츄얼 머신은 최대 256개의 레지스터를 사용할 수 있으며, 함수의 인자는 순서대로 0번 레지스터부터 할당된다. 물론 이는 어디까지나 버츄얼 머신이 이렇다는 것이기 때문에 실제로 256개의 레지스터가 필요하지는 않고, 적절히 번역돼서 실행된다. 이제 위의 바이트 코드를 읽어보자. b, a = a, b 는 MOVE 2 0; MOVE 0 1; MOVE 1 2 로 컴파일됐다. 이를 이해하기 위해서는 MOVE x y 는 x번째 레지스터에 y번째 레지스터의 값을 복사해 넣는 바이트 코드라는 것과 인자로 넘어온 a 와 b 는 각각 0번 레지스터와 1번 레지스터에 저장돼 있다는 것을 알아야 한다. 그러면 위의 바이트 코드는 3번째 의자인 2번 레지스터를 이용해서 두 변수를 스왑한다는 것을 알 수 있다.

이 블로그의 인기 게시물

USB 2.0 케이블의 내부 구조

[C++] enum class - 안전하고 쓰기 쉬운 enum

Log Aggregator 비교 - Scribe, Flume, Fluentd, logstash

[Web] SpeechSynthesis - TTS API

[Python] cache 데코레이터로 최적화하기