라벨이 consistency인 게시물 표시

CAP theorem

CAP theorem 은 분산 스토리지는 consistency(a.k.a. C ), availability(a.k.a A ), partition tolerance(a.k.a. P )를 동시에 만족시킬 수 없다는 것이다. 여기서 C , A , P 는 각자 일반적으로 사용되는 용어와 다른 용어로 사용되기 때문에 CAP theorem을 이해하려면 각자가 정의하는 것을 이해하는 것이 중요하다. C 는 모든 read operation이 최신 데이터를 받는 것을 보장하는 것이다. C 를 보장하는 시스템은 만약 최신 데이터를 돌려줄 것을 보장하지 못한다면 에러를 돌려줘야 한다. 개인적으로 분산 스토리지를 구현할 때 C , A , P 중 가장 구현하기 어려운 특성은 C 라고 생각한다. A 는 모든 operation이 에러가 아닌 데이터를 돌려주는 것이다. 이때 돌려주는 값은 최신 값이 아니어도 상관없다. 심지어 eventual consistency 와 A 를 보장하는 시스템에서는 실제로 존재할 수 없는 데이터 조합이 생길 수도 있다. P 는 partition 상황에서도 시스템이 정상 동작해야 한다는 것이다. 여기서 시스템이 정상 동작한다는 것이 언제나 최신 데이터를 보장하거나 에러가 아닌 값을 준다는 것이 아니다. 그것은 C 와 A 가 보장하는 것이고 partition 상황에서도 partition이 아닌 상황과 같은 것을 보장하면 P를 보장한다고 할 수 있다. 근데 여기서 partition은 정말 네트워크 레이어에 문제가 생겨 물리적으로 다른 망이 구성되는 상황을 말하는 것이 아니다. partition은 일부 메시지가 전달되지 않는 상황도 포함된다. 이는 분산환경에서 매우 흔히 발생하는 일이고 P 를 포기한다는 것은 결국, 분산 환경을 포기한다는 말이 되기 때문에 분산 데이터 스토리지를 만들 때는 결국 CP 와 AP 중 하나를 선택해야 한다. 개인적으로 생각하기에 CP 와 AP 중 구현하기 더 어려운 것은 CP 라고 생각된다. 모든 노드가 언제나 같은...

Raft - consistency

Raft는 모든 결정을 leader가 맡아서 한다. 따라서 term이 변경되기 전에는 leader의 결정을 따르면 된다. 문제는 leader에 문제가 생기거나 네트워크 파티션으로 인해 leader가 변경되고 다음 term으로 진행된 경우다. Consistency를 위해 가장 이상적인 것은 모든 노드가 하나의 leader만 따르도록 하는 것이다. 하지만 이는 사실상 불가능하다. 이게 가능하면 애초에 합의에 도달한 것이다. 그래서 Raft에서는 특정 시간에 2개 이상의 리더가 존재할 수 있다. 단, state를 변경시킬 수 있는 리더는 1개 밖에 있을 수 없다. 이 두 말은 별 차이 없는 것 같지만, 이 차이가 분산 환경에서 구현 가능한 시스템이 되도록 만들어준다. Raft에서는 leader에 커밋 된 로그만이 state를 변경시킨다. Leader가 커밋하기 위해서는 네트워크에 참여하는 노드 과반의 동의가 필요하다. 새 leader가 선출되면 과거의 leader는 절반 이상의 지지를 받지 못한다. 모든 요청에 요청하는 노드의 term이 담겨있고, 요청받은 쪽은 자신의 term보다 작은 term인 노드가 보낸 요청은 모두 거절한다. 새 leader가 선출됐다는 것은 이미 절반 이상의 노드가 다음 term으로 넘어갔다는 것이고 과거의 leader를 지지하는 노드는 절반이 되지 않기 때문에 과거 leader는 더 이상 상태를 변경시킬 수 없다. 따라서 같은 시간에 두 개의 노드가 상태를 변경시키는 것은 불가능하다. 물론 leader가 아닌 노드들이 가지고 있는 상태는 consistent 하지 않다. 새 RequestVote를 받기 전에 과거의 leader가 보낸 AppendEntries 메시지를 받고 자신의 상태를 변경시킬 수 있기 때문이다. 하지만 네트워크의 상태는 리더에 커밋 된 로그를 기준으로 만들어지기 때문에 각 노드의 inconsitecy는 클라이언트가 보는 네트워크 상태에 영향을 주지 않는다. 그렇다면 leader에 커밋 된 로그를 가지지 않은...

이 블로그의 인기 게시물

USB 2.0 케이블의 내부 구조

[C++] enum class - 안전하고 쓰기 쉬운 enum

Log Aggregator 비교 - Scribe, Flume, Fluentd, logstash

[Web] SpeechSynthesis - TTS API

[Python] cache 데코레이터로 최적화하기